API TR 934-F Part 1

API TR 934-F Part 1

Click here to purchase
The objective of this study, in support of API Recommended Practice 934-F (Guidance for Establishing a Minimum Pressurization Temperature (MPT) for Heavy Wall Reactors in High-temperature Hydrogen Service During Startups and Shutdowns), is to establish the technical basis for determining a minimum pressurization temperature necessary to avoid Internal Hydrogen-assisted Cracking (IHAC) of weld metal and base plate of temper-embrittled 2¼Cr-1Mo steel in high-pressure H2 service. The threshold condition for the onset of subcritical crack propagation, and its dependencies on dissolved hydrogen concentration, temperature, and steel purity/temper embrittlement, are targeted as particularly important to pressure vessel safe operations.

A second objective is to improve the underlying database for fracture mechanics fitness-for-service modeling of IHAC. Both analyses are built on the conservative rising-displacement threshold stress intensity factor for IHAC (KIH).This investigation has accomplished five tasks, leading to conclusions that are sufficient to establish RP 934-F on MPT to conservatively avoid IHAC in 2¼Cr-1Mo steel.

Task 1—Summarize and clarify the technical approach, assumptions, data, and modeling results used in Phase II JIP research to quantitatively establish the H concentration and temperature dependencies of the threshold stress intensity, KIH, for IHAC and the concentration dependence of MPT for moderate-impurity 2¼Cr-1Mo steel.

Task 2—Validate the Phase II correlation of KIH and critical temperature vs H concentration, based on new analyses of post-Phase-II IHAC data.

Task 3—Enhance the Phase II analysis of KIH vs crack tip H concentration, and thus MPT, by describing the interaction between temper embrittlement and IHAC using JIP Phase I data so as to predict the influence of modern steel purity.

Task 4—Build on the hydrogen-damage-mechanism-based master correlation between KIH and crack tip stress field/microstructure-trapped H to develop an H concentration similitude parameter that is useful in engineering analysis of thick-wall reactor FFS and MPT.

Task 5—Validate the empirically based trends and predictions of the effects of temperature and steel purity on the threshold stress intensity through consideration of state-of-the-art theory and micromechanical modeling of IHAC.

Product Details

Edition:
1st
Published:
09/01/2017
Number of Pages:
118
File Size:
1 file , 3.3 MB
Product Code(s):
C934F101, C934F101, C934F101
Note:
This product is unavailable in Cuba, Iran, North Korea, Syria

You may also like

API MPMS Chapter 14.14

API MPMS Chapter 14.14

Manual of Petroleum Measurement Standards Chapter 14.14 Venturi Metering of Natural Gas and Other Related Hydrocarbon Fluids, First EditionHandbook /...

API TR 16G

API TR 16G

Well Control Equipment Reliability Modeling, First Editionstandard by American Petroleum Institute, 03/01/2023

API RP 7G-1

API RP 7G-1

Drill Stem Performance Properties, Seventeenth Editionstandard by American Petroleum Institute, 04/01/2023

API RP 6HT

API RP 6HT

Heat Treatment and Testing of Carbon, Micro-alloyed, and Low-alloy Steel Wrought and Cast Components, Third Editionstandard by American Petroleum Institute,...

Back to Top